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Linear stability of Hunt’s flow
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We analyse numerically the linear stability of the fully developed flow of a liquid
metal in a square duct subject to a transverse magnetic field. The walls of the duct
perpendicular to the magnetic field are perfectly conducting whereas the parallel ones
are insulating. In a sufficiently strong magnetic field, the flow consists of two jets
at the insulating walls and a near-stagnant core. We use a vector stream function
formulation and Chebyshev collocation method to solve the eigenvalue problem for
small-amplitude perturbations. Due to the two-fold reflection symmetry of the base
flow the disturbances with four different parity combinations over the duct cross-
section decouple from each other. Magnetic field renders the flow in a square duct
linearly unstable at the Hartmann number Ha ≈ 5.7 with respect to a disturbance
whose vorticity component along the magnetic field is even across the field and odd
along it. For this mode, the minimum of the critical Reynolds number Rec ≈ 2018,

based on the maximal velocity, is attained at Ha ≈ 10. Further increase of the magnetic
field stabilizes this mode with Rec growing approximately as Ha. For Ha > 40, the
spanwise parity of the most dangerous disturbance reverses across the magnetic field.
At Ha ≈ 46 a new pair of most dangerous disturbances appears with the parity along
the magnetic field being opposite to that of the previous two modes. The critical
Reynolds number, which is very close for both of these modes, attains a minimum,
Rec ≈ 1130, at Ha ≈ 70 and increases as Rec ≈ 91Ha1/2 for Ha � 1. The asymptotics of
the critical wavenumber is kc ≈ 0.525Ha1/2 while the critical phase velocity approaches
0.475 of the maximum jet velocity.

1. Introduction
Application of a strong magnetic field to a flow of an electrically conducting fluid

is associated primarily with two effects. Firstly, the magnetic field acts on the mean
flow profile often creating inflexion points (Kakutani 1964), shear layers (Lehnert
1952) and jets (Hunt 1965), thus destabilizing the otherwise stable flow. Secondly,
strong magnetic field tends to damp three-dimensional perturbations making them
anisotropic, aligned with the magnetic field, and to transform them into quasi-two-
dimensional structures (Moffatt 1967; Davidson 1995). There are flows, which combine
the effect of high electromagnetic damping in some flow regions, high transverse
shear in other regions, such as jets, and moderate stretching along the magnetic
field. Instabilities and turbulence may strongly affect the transfer of momentum,
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Figure 1. Sketch to the formulation of the problem with the base flow profile for Ha =100
(a), isolines of base flow (y > 0) and electric current lines (y < 0) for Ha = 6 (x < 0) and
Ha = 100 (x > 0) shown in the respective quadrants of duct cross-section (b) and the base flow
velocity profiles at y =0 for Ha = 0, 6, 50, 100 (c).

heat and mass in such liquid metal flows which are of major importance for
various industrial applications ranging from metallurgy and semiconductor crystal
growth (Davidson 1999) to the designs of fusion reactors with magnetic confinement
(Bühler 2007).

Here we will be concerned with linear stability of the fully developed isothermal
magnetohydrodynamic (MHD) flow in a constant-area square duct with a pair of
perfectly electrically conducting and another pair of perfectly insulating walls in
the presence of a strong magnetic field. The field is parallel to the insulating walls
and perpendicular to the conducting ones, and such a flow is known as the Hunt’s
flow (Hunt 1965). For strong magnetic fields this flow has a pair of characteristic
sidewall jets developing along the insulating walls while the velocity in the core of
the duct is significantly reduced (see figure 1). These effects are due to the pattern
of the electric currents, shown in figure 1(b) for y < 0. In the core of the duct the
electric currents are induced in the direction transverse to the magnetic field and,
thus, the resulting electromagnetic force nearly balances the pressure gradient driving
the flow. At the insulating sidewalls, the electric current turns almost parallel to
the magnetic field and, thus, the electromagnetic braking force in these regions is
significantly reduced. As a result, the applied pressure gradient is balanced there
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mainly by the viscous shear, and the flow protrudes through the magnetic field in thin
jets along the sidewalls. In the limit of a very strong magnetic field, the jets, which
are of fundamental importance for liquid metal blankets in fusion reactors (see e.g.
Molokov 1993; Molokov & Bühler 1994; Stieglitz et al. 1996) carry almost all of the
volume flux in the so-called parallel layers. Such a velocity profile is highly unstable,
as has been confirmed experimentally by Gelfgat, Dorofeev & Scherbinin (1971)
and Platnieks & Freibergs (1972). Linear stability analysis of Hunt’s flow has been
attempted by Fujimura (1989) by assuming two-dimensional mean velocity profile
and two-dimensional disturbances, both in the mid-plane of the duct transverse to the
field. His results are of limited interest owing to the three-dimensional nature of both
the mean profile and the disturbances. A three-dimensional linear stability analysis of
a single sidewall jet has been carried out by Ting et al. (1991). They consider the flow
in a rectangular duct with thin conducting walls in the presence of a strong transverse
magnetic field. Although Ting et al. (1991) assume the wall conductance ratio to be
small, the magnetic field is supposed to be so strong that the relative conductance
of both Hartmann and parallel layers is even smaller than that of the walls. As a
result, the induced electric current passes from the core region directly through the
parallel layer into the sidewall to close through normal walls back to the core region.
Thus, both the sidewalls and Hartmann walls are treated by Ting et al. (1991) as
effectively well-conducting boundaries. Direct numerical simulation of this flow has
been undertaken by Mück (2000) for the Reynolds number significantly above the
linear stability threshold for the side layers predicted by Ting et al. (1991).

Here, we present the results of the three-dimensional linear stability analysis of
Hunt’s flow in a square duct, which according to Tatsumi & Yoshimura (1990) is
linearly stable in the absence of a magnetic field. We show that the instability is
far more complex than predicted by Ting et al. (1991) and Fujimura (1989) using
asymptotic theory and two-dimensional approximation, respectively. A magnetic field
of moderate strength is found to render the flow linearly unstable with respect to two
pairs of antisymmetric streak-like perturbations of the axial velocity concentrated
in the middle part of the duct. The most dangerous perturbation is essentially
three-dimensional with the component of vorticity along the magnetic field being
even and odd function across and along the magnetic field, respectively. This
instability is associated with the appearance of two velocity minima in the centre
of the duct which at stronger magnetic fields develop into the sidewall jets. As the
magnetic field strength increases, another essentially three-dimensional instability
mode with the opposite parity across the magnetic field appears. The critical
wavelength of both these modes exceeds the width of the duct several times even
in relatively strong magnetic fields. At the same time, the phase velocity strongly
correlates with the maximum jet velocity. In a sufficiently strong magnetic field,
the critical Reynolds number, based on the maximum velocity, increases nearly
directly with the magnetic field strength. As the sidewall jets develop, two new,
much more unstable modes appear with the parity along the magnetic field opposite
to that of two previous modes. The critical Reynolds number, which is almost
the same for the last two modes, increases at high magnetic fields inversely with
the side layer thickness while the critical wavelength reduces directly with the
thickness.

The paper is organized as follows. In § 2 we formulate the problem. Numerical
method is outlined and verified in § 3 and numerical results are discussed in § 4.

Section 5 summarizes and concludes the paper.
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2. Problem formulation
Consider a flow of an incompressible viscous electrically conducting liquid with

density ρ, kinematic viscosity ν and electrical conductivity σ driven by a constant
gradient of pressure p applied along a straight duct of rectangular cross-section with
half-width d and half-height h subject to a homogeneous transverse magnetic field
B. The walls of the duct perpendicular to the magnetic field are perfectly conducting
whereas the parallel ones are insulating.

The velocity distribution v of the flow is governed by the Navier–Stokes equation

∂tv + (v · ∇)v = − 1

ρ
∇p + ν∇2v +

1

ρ
f , (2.1)

where f = j × B is the electromagnetic body force involving the induced electric
current, which is governed by the Ohm’s law for a moving medium

j = σ (E + v × B), (2.2)

where E is the electric field. The flow is assumed to be sufficiently slow so that
the induced magnetic field is negligible with respect to the imposed one, implying
the magnetic Reynolds number Rm= μ0σv0d � 1, where μ0 is the permeability of
vacuum and v0 is the characteristic velocity of the flow. In addition, we assume that
the characteristic time of velocity variation is much longer than the magnetic diffusion
time τm = μ0σd2 that allows us to use the quasi-stationary approximation, according
to which E = −∇φ, where φ is the electrostatic potential. The velocity and current
satisfy the mass and charge conservation ∇ · v = ∇ · j = 0. Applying the latter to the
Ohm’s law (2.2) yields

∇2φ = B · ω, (2.3)

where ω = ∇ × v is vorticity. At the walls of the duct S, the normal (n) and tangential
(τ ) velocity components satisfy the impermeability and no-slip boundary conditions,
namely vn|s = 0 and vτ |s = 0. The conditions for the electric current at insulating
and perfectly conducting walls are jn|s = 0 and jτ |s = 0, respectively. Boundary
conditions for the current and velocity applied to Ohm’s law result in ∂nφ|s = 0 and
φ|s = const. for φ at insulating and perfectly conducting walls, respectively.

We employ the Cartesian coordinates with the origin set at the centre of the duct
and with x, y and z axes directed along the width, height and length of the duct,
respectively, as shown in figure 1, with the velocity distribution given by v = (u, v, w).
The problem admits a purely rectilinear base flow with a single velocity component
along the duct v̄ = (0, 0, w̄(x, y)) which is shown in figure 1(a) for Ha = 100. In the
following, all variables are non-dimensionalized by using the maximum velocity w̄0

and the half-width of the duct d as the velocity and length scales, while the time,
pressure, magnetic field and electrostatic potential are scaled by d2/ν, ρw̄2

0, B = |B|
and w̄0dB, respectively. Note that we use the maximum rather than average velocity
as the characteristic scale because the stability of this flow is determined by the former
as discussed in the following.

Base flow can more conveniently be described using the z component of the induced
magnetic field b̄ instead of the electrostatic potential φ̄ (Moreau 1990). This temporal
change of variables does not affect the following linear stability analysis which requires
the base flow profile but not the electrostatic potential. Then the governing equations
for the base flow take the form

∇2w̄ + Ha∂yb̄ = P̄ , (2.4)

∇2b̄ + Ha∂yw̄ = 0, (2.5)
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where Ha = dB
√

σ/(ρν) is the Hartmann number and b̄ is scaled by μ0

√
σρν3/d .

Note that the isolines of b̄ represent electric current lines which are shown in the
bottom part of figure 1(b) for Ha = 6 and Ha = 100. The dimensionless constant axial
pressure gradient P̄ , which drives the flow, is determined from the normalization
condition w̄max =1. The velocity satisfies the no-slip boundary condition w̄ =0 at
x = ±1 and y = ±A, where A= h/d is the aspect ratio, which is equal to 1 for
the square cross-section duct considered in this study. The boundary conditions for
the induced magnetic field at insulating and perfectly conducting walls are b̄ =0
(x = ±1) and ∂yb̄ = 0 (y = ±A), respectively. The base flow is obtained numerically
by the Chebyshev collocation method which is described and validated in the next
section.

In order to satisfy the incompressibility constraint ∇ · v = 0 for the flow perturbation,
we are looking for the velocity distribution as v = ∇ × ψ, where ψ is a vector
stream function. The vector stream function, as the magnetic vector potential A in
electrodynamics, is defined up to a gradient of an arbitrary function which added to
ψ does not change v. In order to eliminate this ambiguity, we impose an additional
constraint on ψ

∇ · ψ = 0, (2.6)

which is analogous to the Coulomb gauge for A (Jackson 1998). This gauge, similar
to the incompressibility constraint for v, leaves only two independent components
of ψ .

The pressure gradient is eliminated by applying curl to (2.1) which yields two
dimensionless equations for ψ and ω

∂tω = ∇2ω − Reg + Ha2h, (2.7)

0 = ∇2ψ + ω, (2.8)

where g = ∇ × (v · ∇)v and h = ∇ × f are the curls of the dimensionless convective
inertial and electromagnetic forces, respectively, and Re= w̄0d/ν is the Reynolds
number. In fusion blanket applications Re ∼ 101–105 while Ha ∼ 103–104.

The boundary conditions for ψ and ω are obtained as follows. The impermeability
condition applied integrally as

∫
s
v · ds =

∮
l
ψ · dl = 0 to an arbitrary area of the wall s

encircled by a contour l yields ψτ |s = 0. Using this boundary condition, which implies
ψ |s = nψn|s , in combination with (2.6) we obtain ∂nψn|s = 0. In addition, the no-slip
condition applied integrally

∮
l
v · dl =

∫
s
ω · ds yields ωn|s =0.

We analyse linear stability of the base flow {ψ̄, ω̄, φ̄}(x, y) with respect to
infinitesimal disturbances in the form of harmonic waves travelling along the axis of
the duct

{ψ, ω, φ}(r, t) = {ψ̄, ω̄, φ̄}(x, y) + {ψ̂, ω̂, φ̂}(x, y)eγ t+ikz,

where k is a wavenumber and γ is, in general, a complex growth rate. Upon
substituting the solution sought in such a form into (2.7) and (2.8), we obtain
the governing equations for the disturbance amplitudes

γ ω̂ = ∇2
kω̂ − Re ĝ + Ha2 ĥ, (2.9)

0 = ∇2
kψ̂ + ω̂, (2.10)

0 = ∇2
kφ̂ − ω̂y, (2.11)

where ∇k ≡ ∇ + ikez. Because of the solenoidity constraint satisfied by ω̂ similarly

to ψ̂ , we need only the x and y components of (2.9), namely ĥx = −∂xyφ̂ − ∂yŵ,
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Figure 2. Accuracy of the base flow at various Hartmann numbers depending on the number
of terms in the Fourier series solution (top axis) and the number of collocation points for
numerical solution (bottom axis).

ĥy = − ∂yyφ̂ and

ĝx = k2v̂w̄ + ∂yy(v̂w̄) + ∂xy(ûw̄) + i2k∂y(ŵw̄), (2.12)

ĝy = −k2ûw̄ − ∂xx(ûw̄) − ∂xy(v̂w̄) − i2k∂x(ŵw̄), (2.13)

where û = ik−1(∂yyψ̂y −k2ψ̂y +∂xyψ̂x), v̂ = − ik−1(∂xxψ̂x −k2ψ̂x +∂xyψ̂y) and ŵ = ∂xψ̂y −
∂yψ̂x. The relevant boundary conditions are

∂xφ̂ = ψ̂y = ∂xψ̂x = ∂xψ̂y − ∂yψ̂x = ω̂x = 0 at x = ±1, (2.14)

φ̂ = ψ̂x = ∂yψ̂y = ∂xψ̂y − ∂yψ̂x = ω̂y = 0 at y = ±A. (2.15)

3. Numerical method
We solve the problem posed by (2.4)–(2.5) and (2.9)–(2.11) with the boundary

conditions (2.14), (2.15) by a spectral collocation method on a Chebyshev–Lobatto
grid using even number of points in the x and y directions given by 2Nx + 2 and
2Ny + 2, respectively, where Nx,y =30 . . . 55 is used depending on Ha and Re. The
convergence of the numerical solution for the base flow was validated against the
Fourier series solution of Hunt (1965). Firstly, we looked at the relative error in the
flow rate for a fixed pressure gradient. As seen in figure 2, analytical solution for this
quantity converges as O(N−3) and requires ≈ 103 terms at Ha =103 for the relative
accuracy of ≈ 10−6. The numerical solution for the flow rate shows a faster-than-
algebraic convergence rate developing at sufficiently high resolution, which is typical
for spectral methods. Secondly, maximum error in velocity scaled with respect to the
velocity maximum for Nx = Ny decreases as O(N−4

x,y). For Ha = 103, the resolution
of Nx × Ny =50 × 50 ensures the relative accuracy in the base flow velocity of about
10−5. The convergence of the linear stability problem, for which the resolution of the
base flow is necessary but not sufficient, is tested below.
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I II III IV

ψ̂x, ω̂x, v̂ : (o, o) (o, e) (e, o) (e, e)
ŵ : (o, e) (o, o) (e, e) (e, o)

ψ̂z, ω̂z : (e, o) (e, e) (o, o) (o, e)

ψ̂y, ω̂y, û, φ̂ : (e, e) (e, o) (o, e) (o, o)

Table 1. The (x, y) parities of different variables for symmetries I, II, III and IV;
e – even, o – odd.

Because of the double reflection symmetry of the base flow with respect to x =0
and y = 0 planes, small-amplitude perturbations with different parities in x and y

decouple from each other. This results in four mutually independent modes which we
classify as (o, o), (o, e), (e, o) and (e, e) according to whether the x and y symmetry
of ψ̂x is odd or even, respectively. Our classification of modes specified in table 1
corresponds to the symmetries I, II, III and IV used by Tatsumi & Yoshimura (1990)
and Uhlmann & Nagata (2006). As a result, the problem is broken up into four
independent problems of different symmetries defined in one quadrant of the duct
cross-section with Nx × Ny internal collocation points. This allows us to reduce the
size of the matrix in the eigenvalue problem, which is derived below, by a factor of
16. For each symmetry, we represent (2.9), (2.10) in the matrix form

γω0 = A0ω0 + A1ω1 + f0, (3.1)

0 = B0ψ0 + ω0, (3.2)

where ψ0 and ω0 are the values of (ψ̂x, ψ̂y), (ω̂x, ω̂y) at the internal collocation points,
ω1 are unknown values of the tangential component of (ω̂x, ω̂y) at Nx + Ny boundary
points; f0 stands for the source term in (2.9), A0, A1 and B0 matrices represent
collocation approximation of ∇2

k operator with the explicit boundary conditions
(2.14), (2.15) eliminated. For the unknown boundary values of ω1, we have an extra
boundary condition ∂xψ̂y − ∂yψ̂x = 0 imposed on (ψ̂x, ψ̂y) at Nx +Ny boundary points
which is represented as

C0ψ0 = 0. (3.3)

To obtain a conventional matrix eigenvalue problem for γ, we need to eliminate ω1

from (3.1), (3.2). Multiplying both sides of (3.1) by C0B
−1
0 we obtain

C0B
−1
0 A1ω1 = −C0B

−1
0 (A0ω0 + f0), (3.4)

because (3.2) and (3.3) imply

γC0B
−1
0 ω0 = −γC0ψ0 = 0. (3.5)

Now, ω1 can be expressed in terms of ω0 and f0 by solving (3.4) that substituted back
into (3.1) results in

γω0 = D0(A0ω0 + f0),

where D0 = I − A1(C0B
−1
0 A1)

−1C0B
−1
0 and I is the identity matrix. Note that f0 is linear

in both ψ0 and φ0 where the latter can be expressed as φ0 = E−1
0 ω0,y by solving the

matrix counterpart of (2.11). Eventually, using (3.2), we can write f0 = F0ψ0, which
leads to

γψ0 = B−1
0 D0(A0B0 − F0)ψ0. (3.6)

This complex matrix eigenvalue problem is solved by the LAPACK’s ZGEEV routine.
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Nx × Ny c Nx × Ny c

20 × 20 (0.9515252, −0.02267611) 20 × 35 (0.23219007, −0.3204544 × 10−3)
24 × 24 (0.9514767, −0.02258387) 25 × 40 (0.23237696, −0.5640044 × 10−4)
28 × 28 (0.9514760, −0.02258432) 30 × 45 (0.23239397, −0.28703331 × 10−4)
32 × 32 (0.9514760, −0.02258432) 30 × 50 (0.23239343, −0.21204144 × 10−4)
36 × 36 (0.9514760, −0.02258432) 40 × 60 (0.23239274, −0.21981102 × 10−4)

Table 2. Convergence of the complex relative phase velocity c = iγ /(Re k) of the least stable
mode of symmetry I for a model base flow w̄(x, y) = (1 − x2)(A2 − y2) with A = 1, Re= 104

and k = 1 (left) and for the non-magnetic duct flow with A = 5, Re= 1.04 × 104 and k = 0.91
considered by Tatsumi & Yoshimura (1990) (right).

Without the base flow (Re = 0), the leading eigenvalues of (3.6) are real and
negative except for Nx + Ny eigenvalues which are zero within machine accuracy.
These spurious eigenvalues are caused by the way the boundary condition (3.3) is
imposed using (3.5) which can also be satisfied by γ = 0. These zero eigenvalues
can easily be identified and discarded. Alternatively, they can be shifted down the
spectrum by an arbitrary value γ0 when γ0C0ψ0 is added to the right-hand side
of (3.4). Note that this transformation does not affect the true eigenmodes which
satisfy the boundary condition (3.3). However, our approach is not completely free of
unstable spurious eigenmodes which may appear at sufficiently high Re depending on
the collocation approximation of inertial terms (2.12), (2.13). Because the collocation
differentiation satisfy the product rule approximately rather than exactly (Fornberg
1996), the discretization of inertial terms is affected by the form in which they are
presented. We find that the number of unstable spurious eigenmodes is the least
when the inertial terms are approximated in the ‘conservative’ form given by (2.12),
(2.13). In contrast to the true eigenmodes, the spurious ones are numerical artifacts
which depend strongly on the number of collocation points. This allows us to identify
them easily by recalculating the spectrum with Nx + 1 and Ny + 1 collocation points
and retaining only those eigenvalues whose modulus of the relative variation is
typically less than ε =10−3–10−4, which is subsequently referred to as the relative
accuracy threshold. Once a true eigenvalue is identified, it can be tracked further by
its imaginary part without recalculating the spectrum as the control parameters are
slowly varied.

The numerical method has been validated using a model base flow w̄(x, y) = (1 −
x2)(A2 − y2) with A= 1 at Re= 104 and k =1 as well as the non-magnetic duct flow
with A= 5, Re = 1.04 × 105 and k = 0.91 considered by Tatsumi & Yoshimura (1990)
that resulted in the complex relative phase velocity c = iγ /(Rek) for the least stable
mode of symmetry I (o, o) which is shown in table 2 for various resolutions. For the
model flow, the increase of the resolution from 20 × 20 to 28 × 28 collocation points
results in the fast convergence of the leading eigenvalue with the accuracy raising from
two to seven figures, respectively, which is comparable to the accuracy of the Galerkin
method for this test problem used by Uhlmann (2004). Similarly, fast convergence
is obvious also for the non-magnetic duct flow with aspect ratio A= 5. Owing to
the large aspect ratio A=5 as well as the high Reynolds number Re =1.04 × 104,

which for k = 0.91 is close to its critical value, at least 30 × 45 collocation points
are required to obtain the phase velocity with five accurate figures, which again is
comparable to the accuracy of the Galerkin method tested against the same case by
Uhlmann & Nagata (2006). Also the instability threshold parameters for the aspect
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A Rec × 10−4 kc cc

5 1.043 0.9085 0.2321
4 1.819 0.8139 0.2042
3.5 3.650 0.7075 0.1738

Table 3. The critical Reynolds number Rec , wavenumber kc and phase velocity cc obtained
with 30 × 50 collocation points for the instability mode I in the non-magnetic duct flow at
various aspect ratios A.

Nx × Ny c (Ha= 10)

20 × 20 (0.7579394, −0.3312792 × 10−3)
25 × 25 (0.7579419, −0.3334821 × 10−3)
30 × 30 (0.7579419, −0.3337441 × 10−3)
35 × 35 (0.7579413, −0.3337346 × 10−3)
40 × 40 (0.7579413, −0.3337034 × 10−3)

Nx × Ny c (Ha= 102)

25 × 25 (0.4907420, −0.8028854 × 10−2)
30 × 30 (0.4907416, −0.8028572 × 10−2)
35 × 35 (0.4907415, −0.8028551 × 10−2)
40 × 40 (0.4907415, −0.8028549 × 10−2)
45 × 45 (0.4907415, −0.8028549 × 10−2)

Nx × Ny c (Ha= 103)

40 × 40 (0.5053194, 0.1453188 × 10−2)
45 × 45 (0.5054035, 0.1421803 × 10−2)
50 × 50 (0.5053892, 0.1416928 × 10−2)
55 × 55 (0.5053904, 0.1416891 × 10−2)
60 × 60 (0.5053902, 0.1417051 × 10−2)

Table 4. Convergence of the complex relative phase velocity c = iγ /(Re k) of the least stable
mode for the Hunt’s flow in square duct at three different Hartmann numbers: 1) Ha = 10,
Re =2000, k = 0.8, mode II; 2) Ha = 102, Re= 103, k = 5, mode I; 3) Ha = 103, Re= 3 × 103,
k =16, mode I.

ratios A= 5, 4, 3.5, which are shown in table 3 for 30 × 50 resolution, agree well with
Tatsumi & Yoshimura (1990).

As seen in table 4, a comparably fast convergence holds also for the complex phase
velocity of the least stable modes in the Hunt’s flow at Ha = 10, 102, 103. Detailed
numerical results for these instability modes are presented in the next section. A
typical spectrum of the complex relative phase velocities c is shown in figure 3 for
Ha = 100 close to the instability threshold for the least stable modes of type I and
III. The eigenvalues have been computed using 50 × 50 collocation points and the
relative accuracy threshold ε = 10−3.

Subsequently, to verify the numerical accuracy of the obtained results we recalculate
them with the resolution increased by 5 collocation points in each direction. Only the
results coinciding by at least four leading figures are retained. For modes I and III,
the resolution of 35 × 35 ensures the accuracy of at least 5 digits at Ha = 100, while
50 × 50 resolution is required at Ha =3 × 103. Modes II and IV require only 30 × 30
resolution at Ha ≈ 10, whereas 55 × 55 points are required at Ha ≈ 400.

4. Results and discussion
Here we present the results for the flow in a square duct which according to

Tatsumi & Yoshimura (1990) is linearly stable in the non-magnetic case. First, we
find the base flow numerically and normalize it with respect to its maximum velocity



124 J. Priede, S. Aleksandrova and S. Molokov

–3.0

–2.5

–2.0

–1.5

–1.0

–0.5

 0

 0.1 1.0

ci

cr

Critical eigenvalue

I
II

III
IV

Figure 3. Spectrum of the complex relative phase velocities c = iγ /(Re k) for all four mode
types at Ha = 100, Re =103, k = 5 obtained with 50 × 50 collocation points and the relative
accuracy threshold ε = 10−3.

which is used here as the velocity scale. The flow rate over one quarter of the duct,
which is also the average velocity, is found to vary for Ha � 1 as

Q ≈ 1.23Ha−1/2 + 3.87Ha−1, (4.1)

where both coefficients are obtained by the best fit of the numerical solution. The
main contribution to the flow rate is due to the side jets whereas the next-order
correction is due to the core flow. Although the characteristic velocity of the core flow
is only O(Ha−1) with respect to that of the side layers, its relative contribution to the
flow rate is Ha1/2 times larger because the relative thickness of side jets is O(Ha−1/2).
If the flow rate were used for the characteristic velocity, the relative contribution
of the core flow in the critical Reynolds number would be O(Ha−1/2). In contrast,
when the maximum velocity is used for this purpose, the correction is only O(Ha−1)
which becomes negligible at a much lower Ha than the previous one. This results in
a more definite asymptotics appearing at numerically attainable values of Ha. Note
that for Ha = 103 the relative contribution of the core flow to the flow rate is about
10 %. Therefore, we have chosen the maximum rather than average velocity as the
characteristic scale.

The neutral stability curves for the instability type II plotted in figure 4 show
the marginal Reynolds number, which yields zero growth rate (
[γ ] = 0) of the
most unstable mode for the given wavenumber, and the relative phase velocity
c = −ω/(Re k) at various Hartmann numbers. Here ω = �[γ ] is the frequency of
the corresponding neutrally stable mode. The minimum of the marginal Reynolds
number and the corresponding wavenumber at which it occurs give, respectively, the
critical value Rec and the critical wavenumber kc. This wavenumber along with the
corresponding phase velocity is plotted in figure 5 against the Hartmann number.
It is seen in figure 5(a) that the mode of type II, which is the most unstable up to
Ha ≈ 40, first appears at Ha ≈ 5.7. At this Hartmann number, the velocity profile of
the base flow, which is very close to those shown in figures 1(b) and 1(c) for Ha = 6,

has a minimum at the centre of the duct accompanied by two slight maxima at the
each side of it. With the increase of the magnetic field, these velocity maxima develop
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Figure 4. Marginal Reynolds number (a) and relative phase velocity (b) versus the
wavenumber for neutrally stable modes of type II.
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against Hartmann number.

into the jets localized at the sidewalls of the duct (see figure 1c). There are inflection
points in the velocity profile, which imply a possibility of an inviscid-type instability,
however this criterion is generally restricted to one-dimensional inviscid flows (Bayly,
Orszag & Herbert 1988).

Note that in a certain range of the Hartmann number there may be two local
minima on the neutral stability curve. These are denoted as (IIa) and (IIb) in
figure 4(a). The first minimum, IIa, is below the second one up to Ha ≈ 7 where the
critical mode switches to IIb. The corresponding branches of the critical parameters



126 J. Priede, S. Aleksandrova and S. Molokov

–1.0 –0.5

(a) (b)

 0  0.5 1.0
–1.0

–0.5

 0

 0.5

 1.0
ψz ψzwz wz

ℜ

ℑ

x
–1.0 –0.5  0  0.5 1.0

x

y

–1.0

–0.5

 0

 0.5

 1.0

y

ℜ

ℑ

Figure 6. Amplitude distributions of real (y > 0) and imaginary (y < 0) parts of ŵ (x < 0) and

ψ̂z (x > 0) of the critical perturbations over one quadrant of duct cross-section for instability
modes IIa (a) and IIb (b) at Ha ≈ 7 and Re ≈ 104.

for this mode are labelled as IIa and IIb in figure 5. With the increase of Ha, Rec

first steeply decreases down to its minimal value of Rec ≈ 2018 at Ha ≈ 10 and then
starts to increase with the rate becoming nearly proportional to Ha for Ha � 40. It is
important to note that the relative phase velocity of the neutrally stable modes, shown
in figure 4(b), is nearly invariant with wavenumber, and has the order of magnitude
O(1). Moreover, the relative phase velocity is seen in figure 5(c) to stay about O(1) at
large Ha as well. Both of these facts imply that the phase velocity of unstable modes
is strongly correlated with the maximum velocity defined by Re.

In order to visualize the three-dimensional velocity field of the critical perturbation
given by 
[v̂(x, y)eikcz] we consider the complex amplitude of the velocity perturbation

v̂ = ∇k × ψ̂ which is associated with the corresponding vector stream function ψ̂ .

The velocity field (û, v̂) in the (x, y) plane can be decomposed into solenoidal v̂s

and potential v̂p components which satisfy ∇ · v̂s =0 and ∇ × v̂p =0, respectively.
The solenoidal component satisfying the impermeability boundary condition is
given by v̂s = − ez × ∇ψ̂z which implies that ψ̂z is the stream function of v̂s . The
incompressibility constraint of the whole velocity perturbation, which may be written
as ∇ · v̂p = −ikŵ, in turn, links the potential component v̂p to the longitudinal velocity
perturbation ŵ, which serves as a source or a sink for the former. Therefore, the
whole velocity perturbation is completely defined by ψ̂z and ŵ. In a similar way, the
streamlines of solenoidal flow components in the (x, z) and (y, z) planes are given by
ψ̂y and ψ̂x, respectively. Note that the perturbation amplitudes are complex quantities
whose real and imaginary parts correspond to the instantaneous distributions in the
(x, y) plane shifted in time or in space by a quarter of a period.

Distributions of the most unstable perturbation amplitudes of types IIa and IIb
are plotted in figure 6 for Ha ≈ 7 over different quadrants of the duct cross-section.
Both perturbations differ mainly by the critical wavenumbers, kc ≈ 0.44 and kc ≈ 1,

respectively, but have similar amplitude distributions concentrated about the centre
of the duct. Transversal circulation in the (x, y) plane, which is given by the isolines of
ψ̂z, takes place about the centre of the duct with v̂x and v̂y being even functions of x

and y, respectively. The longitudinal velocity perturbation ŵ, caused by the advection
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Figure 7. Isosurfaces of longitudinal velocity ŵ (a) and electric potential φ̂ (b) perturbation
over a wavelength in one quadrant of duct cross-section for instability mode IIb at Ha ≈ 7
and Re ≈ 104.

of momentum of the base flow by the transversal circulation, is an odd function of
both x and y. Both of these instability modes are obviously related to the two local
velocity maxima which appear first in the centre of the base flow at Ha ≈ 6. With
the increase of Ha these two velocity maxima develop into a pair of jets along the
insulating sidewalls (see figure 1b, x < 0).

Besides spatial amplitude distributions, the perturbations can be characterized
by the kinetic energy distribution over the velocity or vorticity/stream function
components as follows:

E ∝
∫

S

ˆ|v|
2
ds =

∫
S


[ω̂ · ψ̂∗
] ds,

where E is the kinetic energy of perturbation averaged over the wavelength. The
integrals in the expression above are taken over the duct cross-section S, and the
asterisk denotes the complex conjugate. We find that 98 % and 91 % of kinetic
energy for modes IIa and IIb, respectively, are carried by the longitudinal velocity
perturbation ŵ. The corresponding component of the vorticity perturbation (ω̂z, ψ̂z),
which is associated with the circulation in the (x, y) plane, contains only 2 % and
7 % of kinetic energy, respectively. The isosurfaces of the critical perturbations of
longitudinal velocity and electric potential are shown in figure 7 for one wavelength
of mode IIb in the right bottom quadrant of duct at Ha =7 and Re = 104.

The corresponding perturbation pattern for mode IIa differs mainly by a longer
wavelength. As seen in figure 7(a), the perturbation of ŵ represents a pair of
elongated, slightly tilted and periodically overlapping streaks located close to the
centre of the duct. The perturbation of the electric potential, which is the largest in
the vertical mid-plane of the duct (x = 0), partly reaches the sidewalls where it can be
measured experimentally.

Neutral stability curves for the instability mode of type IV, which appears for
Ha � 28 and differs from the previous one by the opposite x parity, are plotted in
figure 8. Figure 5 shows that Rec of this mode, which for low values of Ha lies above
that of mode II, first steeply decreases with Ha by reaching Rec ≈ 9 × 103 of mode
II at Ha ≈ 40. The critical Reynolds number for mode IV attains a minimum of
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wavenumber for neutrally stable modes of type IV.
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Figure 9. Amplitude distributions of real (y > 0) and imaginary (y < 0) parts of ŵ (x < 0) and

ψ̂z (x > 0) of the critical perturbations over one quadrant of duct cross-section for instability
modes II (a) and IV (b) at Ha ≈ 40 and Re ≈ 9 × 104.

Rec ≈ 8.8 × 103 at Ha ≈ 44 and then starts to increase with Ha remaining below Rec

for mode II up to the largest numerically attainable value of Ha ≈ 400.

Amplitude distributions of the most unstable perturbations of types II and IV are
plotted in figure 9 at Ha ≈ 40 and Re ≈ 9 × 103. The critical wavenumbers for these
modes are, respectively, kc ≈ 0.75 and kc ≈ 0.49. It is seen in figure 9(a) that mode II
has moved from the centre of duct, where it originally appeared at Ha ≈ 5.7, to the
sidewall. The only principal difference between these modes is the opposite x parity
which results in a pair of mirror-symmetric longitudinal vortices on each side of the
duct with the same or opposite sense of circulation for modes II and IV, respectively.
In the first case, both vortices are partly connected across the vertical mid-plane of
the duct whereas they are separated by that plane in the second case. For both modes,
the perturbations of the longitudinal velocity are localized in the sidewall jets and
are very similar to each other except for the opposite phases of oscillations across
the width of the duct. Modes II and IV are also similar from the energetic point
of view with 88 % and 93 % of kinetic energy concentrated in the perturbation of
the longitudinal velocity. The least amount of energy, which is about 1 % and 0.4 %,
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Figure 10. Isosurfaces of longitudinal velocity w (a) and electric potential φ (b) perturbation
over a wavelength in one quadrant of duct cross-section for instability mode IV at Ha ≈ 40
and Re ≈ 9 × 104.
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Figure 11. Marginal Reynolds number (a) and relative phase velocity (b) versus the
wavenumber for neutrally stable modes of types I and III.

respectively, is contained in the x component of the velocity perturbation while the
rest is carried by the y component parallel to the magnetic field.

The isosurfaces of the critical perturbations of the longitudinal velocity and of the
electric potential for mode IV are shown in figure 10 over one wavelength in the right
bottom quadrant of duct for Ha = 40 and Re ≈ 9 × 103. In this case, the distributions
of ŵ and φ̂ are even and odd functions of x, respectively. The corresponding pattern
for mode II at these parameters differs from that of mode IV mainly by the shorter
wavelength and opposite x parity that results in a non-zero perturbation of φ̂ in the
vertical mid-plane of the duct (x = 0).

A pair of additional instability modes of type I and III appears for Ha � 46 and
47, respectively. These modes differ from the ones of type II and IV by the opposite
y parity. The neutral stability curves plotted in figure 11 look very similar for both
of these modes. First, for Ha � 54, 60 the neutral stability curves are seen to form
closed loops which implies that both modes are unstable only within limited ranges
of Reynolds and wavenumbers. In this range of Ha, there is not only the lower
but also the upper critical value of Re, by exceeding which all perturbations of the
corresponding type become linearly stable again.



130 J. Priede, S. Aleksandrova and S. Molokov

–1.0 –0.5  0  0.5  1.0
–1.0

–0.5

 0

 0.5

1.0
ψzwz

ℜ

ℑ

x

y

Figure 12. Amplitude distributions of real (y > 0) and imaginary (y < 0) parts of ŵ (x < 0) and

ψ̂z (x > 0) of the critical perturbations over one quadrant of duct cross-section for instability
mode I at Ha ≈ 100 and Rec ≈ 1170.

These critical values of Re, which are considerably lower than those for the
previous two modes, are plotted in figure 5 against the Hartmann number along
with the corresponding wavenumbers and the relative phase velocities. As seen in
figure 5(a), the upper critical Reynolds number steeply increases with Ha, becoming
very large at Ha ≈ 54, 60 for modes I and III, respectively. The lower value of
Rec steeply decreases to its minimum Rec ≈ 1130 attained at Ha ≈ 70. A further
increase of Ha results in the growth of the critical Reynolds number for both modes
approaching the asymptotics Rec ≈ 91Ha1/2 for Ha � 1. This implies that the critical
Reynolds number based on the average velocity tends to a constant R̄ec ≈ 112 while
the next-order correction is about 352Ha−1/2. In contrast to this, the relative next-
order correction for Rec based on the maximal velocity, as discussed at the beginning
of this section, is only O(Ha−1). The critical wavenumber for both modes I and
II tends to kc ≈ 0.525Ha1/2. This means that the critical wavelength reduces directly
with the characteristic thickness of the parallel layers O(Ha−1/2). The relative phase
velocity for both modes is seen to tend asymptotically to a constant cc ≈ 0.475 which
confirms that this instability is indeed associated with the sidewall jets and, thus, it
is completely determined by the characteristic thickness and by the velocity of those
jets. Note that the relative phase velocity of two other modes of type II and IV is
also O(1) which implies that these instabilities are associated with the sidewall jets,
too. However, the critical wavenumber for modes II and IV remains O(1) even for
Ha � 1. This, in turn, implies that both of these instability modes are caused by the
velocity variation over the height rather than the thickness of the jet. Thus, the height
rather than thickness of the jet serves as the characteristic length scale for modes II
and IV.

Figure 12 shows the amplitude distribution of the most unstable perturbation for
type I only because it is almost identical to that for type III except for the opposite
y parity. In this case, however, the y parity has almost no effect on the amplitude
distributions on each side of the duct because perturbations are localized in the jets
at the sidewalls and practically do not interact with each other. As it is seen, for both
modes of type I and III, the component of velocity perturbation along the magnetic
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Figure 13. Isosurfaces of ψy (a) and electric potential φ (b) perturbation over a wavelength
in one quadrant of duct cross-section for instability mode I at Ha ≈ 100 and Re ≈ 1170.

field is an odd function of y whereas the other two velocity components are even
functions. Thus, the transversal circulation in the (x, y) plane involves a couple of
vertically mirror-symmetric vortices at each sidewall, while the perturbation of the
longitudinal velocity w, which is an even function of y, is rather uniform along the
magnetic field in the horizontal mid-part of the duct.

From the energetic point of view, it turns out that 70 % and 23 % of the kinetic
energy are carried by the z and x components of the velocity perturbation, while only
7 % are carried by the y component. Thus, 89 % of kinetic energy is concentrated
in the y component of vorticity/stream function perturbation, which is associated
with the z and x velocity components. The x and z components of vorticity/stream
function associated with the y component of velocity contain only 6 % and 5 % of
the energy. Consequently, in this case, the perturbation of the flow is well represented
by ψy alone whose isosurfaces, plotted in figure 13(a) for mode I, show the isolines of
solenoidal circulation in the horizontal plane. The corresponding isosurfaces of the
electric potential perturbation are shown in figure 13(b).

5. Summary and conclusions
In this study we have analysed numerically the linear stability of the flow of a

liquid metal in a square duct subject to a transverse magnetic field. The walls of the
duct perpendicular and parallel to the magnetic field are perfectly conducting and
insulating, respectively. We used a novel three-dimensional vector stream function
formulation and Chebyshev collocation method to solve the eigenvalue problem
for small-amplitude perturbations. Due to the two-fold reflection symmetry of
the base flow with respect to the x =0 and y = 0 planes the perturbations with
four different parity combinations over the duct cross-section decouple from each
other.

The base flow, which without the magnetic field is linearly stable in a square duct,
becomes unstable at the Hartmann number Ha ≈ 5.7 as two velocity maxima in the
centre of the duct appear. This instability mode, which is the most dangerous at
low Hartmann numbers, involves the vorticity component in the direction of the
magnetic field which is antisymmetric and, thus, essentially non-uniform along the
field and symmetric in the spanwise direction across the duct. The velocity component
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in the direction of the magnetic field for this mode is symmetric along the field and
antisymmetric in the spanwise direction, respectively. This mode becomes the most
unstable at Ha ≈ 10 where its critical Reynolds number based on the maximal velocity
attains a minimum of Rec ≈ 2018. The increase of the magnetic field results in the
stabilization of this mode with Rec growing approximately as Ha. For Ha � 40
another mode with the opposite spanwise parity across the duct becomes the most
dangerous and remains such up to Ha ≈ 46. These two instability modes have most of
their kinetic energy concentrated in long streak-like perturbations of the streamwise
velocity which first appear close to the centre of the duct and then move to the
sidewall layers as the magnetic field increases. The critical wavenumber is O(1) that
corresponds to the critical wavelength considerably exceeding the width of the duct. It
is important to note that the critical phase velocity remains O(1) even in a relatively
strong magnetic field. This implies that for Ha � 1 both of these instability modes
are associated with the sidewall jets.

At Ha ≈ 46 a pair of two additional instability modes appears with the parity
along the magnetic field being opposite to that of the previous two modes. The
critical Reynolds number, which is very close for both modes, attains a minimum of
Rec ≈ 1130 at Ha ≈ 70 and increases as Rec ≈ 91Ha1/2 for Ha � 1. The corresponding
critical wavelength is kc ≈ 0.525Ha1/2 while the critical phase velocity approaches 0.475
of the maximum jet velocity. This again suggests these two instability modes, similarly
to the first two, to be associated with the side jets. The main difference between the
first and second pairs of disturbances is in their critical wavenumbers which are O(1)
and O(Ha1/2), respectively. The latter means that the critical wavelength scales directly
with the side layer thickness O(Ha−1/2), which serves as the characteristic length scale
for the last two instability modes. The critical wavenumber of the first two instability
modes being O(1) implies that they are associated with the velocity variation over the
height of the parallel layer whereas the last two modes are associated with the velocity
variation over the thickness of this layer. From the energetic point of view, the last
two instability modes have most of their kinetic energy concentrated in the vortical
flow component along the magnetic field which corresponds to the fluid circulation
in the planes transverse to the field.

These last two modes are analogous to the side-layer instability mode found by
Ting et al. (1991) for the flow in the duct with thin but relatively well-conducting
walls for Ha � 1. The critical Reynolds number based on the average velocity for
the latter is R̄ec ≈ 313 compared to our result R̄ec ≈ 112 which is rescaled by the
average velocity (4.1). On the other hand, our R̄ec is several times higher than
the corresponding result of Fujimura (1989) for the two-dimensional approximation.
Note that this approximation incorrectly predicts the base flow in a square duct to
remain linearly unstable in the limit of vanishing magnetic field strength whereas a
significant destabilization is predicted at the Hartmann numbers as small as Ha ≈ 10.

In addition, note that the instability predicted at Ha ≈ 10 by our analysis is essentially
three-dimensional, as discussed above, and, thus, it is principally different from
the two-dimensional one found by Fujimura (1989). Further comparison with the
results of Ting et al. (1991) shows that our critical wavenumber k̄c ≈ 0.525 scaled
by the side-layer thickness Ha−1/2 is close to their asymptotic value kcr =0.55. At
the same time, their phase velocity cc = 0.0947 appears to be significantly lower than
ours c̄c =0.423, when rescaled with respect to the average velocity. Moreover, the
instantaneous streamlines in the horizontal mid-plane for the critical perturbation
plotted in figure 13(a) show disconnected subvortices at the sidewall whereas those
of Ting et al. (1991) although being similarly deformed are fully connected single
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vortices. These differences may be due to the different physical model used by Ting
et al. (1991) as discussed in the Introduction.

In conclusion, note that transiently growing small-amplitude perturbations may
appear below the linear stability threshold due to the so-called non-normality of the
linearized operator (Trefethen et al. 1993). Transient growth is sought to account for
the bypass transition to turbulence in the shear flows with a high or none at all
linear stability threshold (Grossmann 2000). Such a subcritical transition can hardly
be relevant for the Hunt’s flow in strong magnetic fields (Ha � 50) because the local
critical Reynolds number based on the thickness of side layers is already very low
≈100. However, it may still be relevant for weaker magnetic fields, in which the
linear stability threshold is much higher or absent at all, when Ha < 5.7. But even
in the latter case, linear transient growth mechanism might be of limited importance
because, as argued by Waleffe (1995), ‘. . . the question of transition is really a question
of existence and basin of attraction of nonlinear self-sustaining solutions that have little
contact with the nonnormal linear problem ’. For a non-magnetic square duct flow, such
nonlinear self-sustaining solutions in the form of finite amplitude travelling waves
have been found recently by Wedin, Bottaro & Nagata (2009) and for the magnetic
case by Kinet, Knaepen & Molokov (2009).

For a flow in the duct with thin conducting walls, the critical Reynolds numbers
observed experimentally by Reed & Picologlou (1989) appear considerably higher
than those predicted by the linear stability theory of Ting et al. (1991). This may be
owing to the fact that the flow in the experiment was developing with jets accelerating
which would render them more stable, or that the probes could not reach the thin
parallel layer where the instabilities occur first. However, this may also imply that the
side-layer instability is supercritical. Then the delay of the transition to turbulence
significantly above the linear stability threshold can be accounted for by the distinction
between the convective and absolute instabilities. The conventional stability analysis
presented in this paper yields the convective instability threshold at which the flow
becomes able to amplify certain externally imposed perturbations (Landau & Lifshitz
1987). For a small-amplitude supercritical perturbation in the form of travelling wave
to become self-sustained absolute instability is necessary (Lifshitz & Pitaevskii 1981).

The authors are indebted to Leverhulme Trust for financial support of this work and
to the Faculty of Engineering and Computing of Coventry University for providing
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